Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present Lightcurve Anomaly Identification and Similarity Search (LAISS), an automated pipeline to detect anomalous astrophysical transients in real-time data streams. We deploy our anomaly detection model on the nightly Zwicky Transient Facility (ZTF) Alert Stream via the ANTARES broker, identifying a manageable ∼1–5 candidates per night for expert vetting and coordinating follow-up observations. Our method leverages statistical light-curve and contextual host galaxy features within a random forest classifier, tagging transients of rare classes (spectroscopicanomalies), of uncommon host galaxy environments (contextualanomalies), and of peculiar or interaction-powered phenomena (behavioralanomalies). Moreover, we demonstrate the power of a low-latency (∼ms) approximate similarity search method to find transient analogs with similar light-curve evolution and host galaxy environments. We use analogs for data-driven discovery, characterization, (re)classification, and imputation in retrospective and real-time searches. To date, we have identified ∼50 previously known and previously missed rare transients from real-time and retrospective searches, including but not limited to superluminous supernovae (SLSNe), tidal disruption events, SNe IIn, SNe IIb, SNe I-CSM, SNe Ia-91bg-like, SNe Ib, SNe Ic, SNe Ic-BL, and M31 novae. Lastly, we report the discovery of 325 total transients, all observed between 2018 and 2021 and absent from public catalogs (∼1% of all ZTF Astronomical Transient reports to the Transient Name Server through 2021). These methods enable a systematic approach to finding the “needle in the haystack” in large-volume data streams. Because of its integration with the ANTARES broker,LAISSis built to detect exciting transients in Rubin data.more » « less
-
Abstract The modern study of astrophysical transients has been transformed by an exponentially growing volume of data. Within the last decade, the transient discovery rate has increased by a factor of ∼20, with associated survey data, archival data, and metadata also increasing with the number of discoveries. To manage the data at this increased rate, we require new tools. Here we presentYSE-PZ, a transient survey management platform that ingests multiple live streams of transient discovery alerts, identifies the host galaxies of those transients, downloads coincident archival data, and retrieves photometry and spectra from ongoing surveys.YSE-PZalso presents a user with a range of tools to make and support timely and informed transient follow-up decisions. Those subsequent observations enhance transient science and can reveal physics only accessible with rapid follow-up observations. Rather than automating out human interaction,YSE-PZfocuses on accelerating and enhancing human decision making, a role we describe as empowering the human-in-the-loop. Finally,YSE-PZis built to be flexibly used and deployed;YSE-PZcan support multiple, simultaneous, and independent transient collaborations through group-level data permissions, allowing a user to view the data associated with the union of all groups in which they are a member.YSE-PZcan be used as a local instance installed via Docker or deployed as a service hosted in the cloud. We provideYSE-PZas an open-source tool for the community.more » « less
-
Abstract We present the Young Supernova Experiment Data Release 1 (YSE DR1), comprised of processed multicolor PanSTARRS1 griz and Zwicky Transient Facility (ZTF) gr photometry of 1975 transients with host–galaxy associations, redshifts, spectroscopic and/or photometric classifications, and additional data products from 2019 November 24 to 2021 December 20. YSE DR1 spans discoveries and observations from young and fast-rising supernovae (SNe) to transients that persist for over a year, with a redshift distribution reaching z ≈ 0.5. We present relative SN rates from YSE’s magnitude- and volume-limited surveys, which are consistent with previously published values within estimated uncertainties for untargeted surveys. We combine YSE and ZTF data, and create multisurvey SN simulations to train the ParSNIP and SuperRAENN photometric classification algorithms; when validating our ParSNIP classifier on 472 spectroscopically classified YSE DR1 SNe, we achieve 82% accuracy across three SN classes (SNe Ia, II, Ib/Ic) and 90% accuracy across two SN classes (SNe Ia, core-collapse SNe). Our classifier performs particularly well on SNe Ia, with high (>90%) individual completeness and purity, which will help build an anchor photometric SNe Ia sample for cosmology. We then use our photometric classifier to characterize our photometric sample of 1483 SNe, labeling 1048 (∼71%) SNe Ia, 339 (∼23%) SNe II, and 96 (∼6%) SNe Ib/Ic. YSE DR1 provides a training ground for building discovery, anomaly detection, and classification algorithms, performing cosmological analyses, understanding the nature of red and rare transients, exploring tidal disruption events and nuclear variability, and preparing for the forthcoming Vera C. Rubin Observatory Legacy Survey of Space and Time.more » « less
An official website of the United States government
